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Abstract

Resin Transfer Molding (RTM) o�ers the potential to manufacture reinforced thermosetting composites of
complex geometries cost-e�ectively, and at high throughputs. Strong uncertainties inherent in the process, however,

stymie robust production of quality composites via this route. Although a number of numerical models have been
developed over the years to describe the process, a thorough and systematic analysis of the parameter uncertainties
has been the subject of little attention, and forms the focus of this study. This paper presents a stochastic model to
investigate the e�ects of process and material parameter uncertainties on the nonisothermal ®lling process during

resin transfer molding. The analysis is performed in terms of four dimensionless parameters that concisely represent
the process physics, and provide for a generalized applicability of the study over a wide range of processing
con®gurations. Parametric studies are conducted to identify optimum values of the dimensionless quantities that

minimize the ®ll time, while simultaneously minimizing the output parameter variabilities. The results of the study
provide valuable insight towards robust manufacture of composite materials. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

Resin Transfer Molding (RTM) is a liquid com-

posite molding technique that is increasingly being

used in the commercial manufacture of reinforced ther-

mosetting composites. In the basic isothermal process,

a catalyzed resin is injected into a closed mold cavity

which has a pre-placed ®ber stack, called the preform,

at room temperature [1]. After the resin has completely

permeated the preform, the mold walls are subjected to

high temperatures in order to initiate complex cross-

linking chemical reactions called cure. Cure leads to an

increase in the viscosity of the resin, and eventually the

resin gels to form a structurally hard composite pro-

duct. In the nonisothermal variants of the RTM pro-

cess, the resin, the mold walls, and the ®ber stack are

all maintained at di�erent temperatures, and the tem-

perature ®eld inside the mold changes continuously as

the resin ¯ows. Nonisothermal mold ®lling has the po-

tential to result in shorter processing cycles, since heat-

ing the resin leads to a decrease in its viscosity, and

hence to faster resin ¯ow. It is to be noted, however,

that heating the resin also initiates the cure reactions

that might cause gelling before the mold is completely

®lled. Complex nonlinear interactions among the gov-

erning phenomena are thus characteristic of the pro-

cess.
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Nomenclature

A aspect ratio
cp speci®c heat capacity [kJ (kg K)ÿ1]
Da DamkoÈ hler number

E activation energy [cal molÿ1]
E dimensionless activation energy
H height of the mold [m]

K frequency factor [minÿ1]
kz thermal conductivity of the composite along the z-direction [W m Kÿ1]
L length of the mold [m]

m, n empirical exponents used in the kinetics equation [Eq. (6)]
N number of samples used in the stochastic analysis
P probability encompassed by each of the strata in the LHS technique
p pressure [bar]

p dimensionless pressure
Pe Peclet number
pi inlet pressure [bar]

po ambient pressure [bar]
R universal gas constant [cal (mol K)ÿ1]
T temperature [K]

t dimensionless time
tc characteristic time [min]
t®ll mold ®ll time [min]

U empirical constant in the expression for viscosity [Eq. (3)]
u velocity of the resin [m sÿ1]
u dimensionless resin velocity
uc characteristic velocity [m sÿ1]
x, z rectilinear coordinates
x, z dimensionless lengths along the x- and z-coordinates
Z multivariate objective function [Eq. (10)]

Greek symbols
amax maximum degree of cure at the end of mold ®ll
Hr heat of the cure reaction [kJ kgÿ1]
d normalized output variance [Eq. (9)]

Z resin viscosity [cP]
Z dimensionless viscosity of the resin
Zc reference viscosity [cP]

Zw resin viscosity based on the wall temperature [cP]
kx preform permeability [m2]
kx dimensionless x-permeability

l empirical constant in the viscosity expression [Eq. (3)]
m mean of an input parameter distribution
f porosity of the preform
y dimensionless temperature

yad dimensionless adiabatic reaction temperature
r density of the composite [kg mÿ3]
rr density of the resin [kg mÿ3]
s standard deviation of an input parameter distribution
s/m normalized deviation of a distribution, used to characterize process uncertainties
t dimensionless ®ll time, t®ll/tc
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The dominant physical phenomena involved in non-

isothermal RTM are the ¯uid mechanics of the resin

permeating the preform, the heat transfer, and the cure

kinetics of the resin. The dynamics of the resin ¯ow

are in turn in¯uenced by its rheological characteristics

and the microstructure of the preform. The kinetic

properties of the resin determine its cure behavior, and

therefore, the mechanical properties of the composite.

The dependence of the resin viscosity on the tempera-

ture and cure ®elds inside the mold closely links the

¯ow and thermochemical phenomena in these pro-

cesses. A thorough understanding of the process

phenomena is essential for designing molds, locating

and sizing injection ports and vents, choosing injection

pressures for complete permeation, selecting the tem-

perature for optimum mold ®lling, and determining

mold ®ll times. Toward this end, many experimental

investigations of resin ¯ow have been reported in lit-

erature [2,3], and numerical models have been devel-

oped to simulate the ¯ow of the resin through the

porous preforms [4±7]. The cure kinetics of resin sys-

tems have also been investigated separately, both ex-

perimentally and theoretically [8±11]. The theoretical

and experimental studies have played an important

role in improving process understanding and guiding

process design and optimization.

A fundamental gap, however, exists between the

simulations and practice, in that whereas practical

manufacturing is carried out amidst a cloud of impre-

ciseness in the material and process parameter values,

the available theoretical process models are determinis-

tic in the way they treat the process variables. The

uncertainties in the parameters arise from sources such

as (a) microstructural variations, which lead to impre-

cise quanti®cation of the permeability and thermal

properties of the preform, and therefore, to unpredict-

able cure and ¯ow rates, (b) variations in the compo-

sition of the resin-catalyst mixture, which result in

uncertainties in its rheological properties and the cure

reaction parameters, (c) inaccuracies associated with

the process monitoring and control, (d) materials vari-

abilities from one vendor to another, and from one

batch to another, and (e) environmental uncertainties.

In the absence of a systematic e�ort to control them,

these parameter uncertainties can cause large variabil-

ities in the product quality and, therefore, hinder e�ec-

tive process design and control.

It is clear, then, that a systematic analysis of the

interactive e�ects of the process uncertainties on the

product quality is imperative for a reliable description

of the fabrication process. Furthermore, such an analy-

sis is vital to a robust manufacturing endeavor, which

seeks to identify operating regimes that minimize the

process output variabilities. Experimental methods

such as the Taguchi's factorial design technique [12]

provide for statistical process analysis and quality con-

trol, and have been used in practical manufacturing

applications. However, such methodologies require

conducting several processing runs, and as a result, are

generally tedious and expensive. Moreover, the result-

ing process designs are limited to the range of par-

ameter values chosen for the experiments, which may

not encompass the true optima.

In this paper, a stochastic analysis capability

embedded in a simulation framework is presented as

an alternative paradigm for analysis and robust design

of the process in the face of realistic parameter uncer-

tainties. The uncertain input parameters of a stochastic

model are assumed to be random variables that are

characterized by probability distributions, and multiple

deterministic simulations are performed using appro-

priately chosen combinations of the input parameters.

Stochastic analysis has previously been used in the

®elds of hydrology and petrology [13], and in safety

assessment of technological systems [14±16]. Earlier

work by the authors presented the use of stochastic

analysis in studying the e�ects of parameter uncertain-

ties on isothermal mold ®lling [17] and the cure kin-

etics of resin systems [18]. The focus of the present

investigation is on the nonisothermal mold ®lling step

during resin transfer molding, with the speci®c goal of

studying the variabilities in the mold ®ll time and resin

cure state at the end of mold ®lling, caused by the

input parameter uncertainties.

In this study, a deterministic process model is devel-

oped to simulate the coupled ¯ow and cure of the

resin during nonisothermal, one-dimensional mold ®ll-

ing. Uncertainties in the preform permeability, the

resin viscosity and the kinetic parameters are quanti-

®ed by assigning appropriate probability distributions

to them, and samples are chosen from these distri-

Subscripts
c characteristic values

m mean values
o inlet conditions
w mold wall conditions

x direction of resin ¯ow
z direction along mold thickness
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butions using the Latin Hypercube Sampling (LHS)
procedure [19]. The outputs of the stochastic model

are probability distributions the ®ll time, and the maxi-
mum cure inside the composite at the end of the ®lling
process. Dimensionless groups that re¯ect the relative

importance of competing physical e�ects are used to
study the output variabilities as a function of the input
uncertainties. Optimum values of the dimensionless

groups that minimize the ®ll times while simul-
taneously reducing output variabilities are identi®ed,
and their signi®cance is discussed. The dimensionless

groups combine material and process parameters, and
consequently provide for a generalized process analysis
and optimization.
The deterministic model for the simulation of the

mold ®lling is presented ®rst, and is followed by the
development of a stochastic analysis methodology. The
results of the study are discussed in Section 4.

2. Deterministic simulation model

Fig. 1(a) shows a schematic of a nonisothermal resin
transfer molding process considered in this study. As
illustrated in the ®gure, resin at room temperature (To)

enters a ®brous preform placed inside a rectangular
mold of length L and cavity thickness H. The upper
and lower walls of the mold are maintained at an elev-

ated temperature, Tw, throughout the injection process.

The resin advances through the preform at a rate
determined by the injection pressure, the permeability

of the preform, and the viscosity of the resin. Heat

transfer from the mold walls accompanies the ¯ow of
the resin, and initiates cure reactions inside the resin as

a function of the local temperature and the kinetic

properties of the resin. The evolution of heat due to
the exothermic chemical reaction alters the temperature

distribution in the mold, and the transient temperature

and the cure ®elds, in turn, a�ect the viscosity of the
resin, and the rate of mold ®ll. It is evident, therefore,

that nonisothermal mold ®lling is a complex physical

process that involves a number of closely coupled
physical phenomena.

Simulation of the combined processes of resin ¯ow,

heat transfer, and kinetics of the cure reaction requires

a simultaneous solution of the partial di�erential
equations governing these physical phenomena. A

detailed analysis of the RTM process needs to consider

three-dimensional ¯ow of the resin, along with the
accompanying thermochemical phenomena, as pre-

sented in the literature [1,7]. However, since the princi-

pal focus of this study is to present a methodology for
a systematic analysis of the e�ects of the various par-

ameter uncertainties on the process variabilities, a one-

dimensional ¯ow and thermochemical model is used in
this investigation.

Fig. 1. (a) Schematic of a nonisothermal resin transfer molding process; (b) description of the stochastic modeling methodology.
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The one-dimensional resin advancement through the
preform is modeled as ¯ow through a porous medium.

The e�ects of the heated mold walls on ®lling are
included by considering the instantaneous viscosity of
the resin to be a function of the local temperature and

degree of cure. The temperature pro®les inside the
mold are determined by solving the two-dimensional
energy equation in the x- and z-directions. An

Arrhenius type empirical equation is used to describe
the cure kinetics and to calculate the degree of cure
distribution in the composite. All the equations are

presented below in their dimensionless forms.
The ¯ow of the resin through the porous preform

can be described using Darcy's law, which for a
Cartesian x±y coordinate system, is written as follows:

�u � ÿ �kx

�Z

�
d �p

d �x

�
�1�

where kx is a dimensionless permeability of the porous
medium in the direction of ¯ow, p is the dimensionless
pressure inside the ¯ow domain, Z is the nondimen-

sional viscosity of the resin, and u is the normalized
velocity in the x-direction. The dimensionless par-
ameters in Eq. (1) are de®ned as follows:

�u � u

uc

; �p � pÿ po

pi ÿ po

; �kx � kx
kxm

; �x � x

H
;

�Z � Z
Zw

�2�

where pi in the inlet resin, po is the ambient pressure,

uc � kxm

Zw

pi ÿ po

L

is a characteristic velocity of ¯ow, kxm is the mean per-
meability of the preform in the ¯ow direction that may
be evaluated using a theoretical model such as [20], H

is the thickness of the mold cavity, and Zw is a charac-
teristic viscosity, evaluated at the temperature of the
mold walls, Tw, and corresponding to zero degree of

cure. The viscosity of the resin at any location inside
the mold, Z, is expressed as an exponential function of
the local temperature and cure [1], as follows:

Z � Zce
U=RTela �3�

where Zc is a reference viscosity used in the rheological
characterization, l and U are empirical constants, R is
the universal gas constant, T is the resin temperature

in K, and a is the degree of cure, de®ned as the frac-
tion of the initial resin concentration that has reacted.
In order to determine the velocity of the resin front

progression using Eq. (1), the pressure gradients at the
¯ow front need to be evaluated numerically. The press-
ure ®eld in the resin-®lled region of the preform is

obtained by substituting for the velocity u in the conti-
nuity equation for one-dimensional incompressible

¯ow, to get

d

d �x

�
�kx

�Z
d �p

d �x

�
� 0 �4�

The boundary conditions for resin ¯ow are pre-

sented in Fig. 1(a), and are stated as follows: At the
inlet, the pressure is constant, and is equal to the injec-
tion pressure, i.e., p=1. At the resin front, the pressure

is equal to the ambient pressure, i.e., p=0.
The pressure ®eld in the resin-saturated preform

region (the dark-shaded region in Fig. 1(a)), and hence
the rates of resin permeation, are closely linked to the

temperature and cure distribution inside the mold,
through the resin viscosity (Eq. (3)). The temperature
and cure pro®les in the preform are obtained as sol-

utions of the coupled energy and reaction kinetics
equations. The two-dimensional energy equation,
describing heat conduction through the thickness of

the composite (z-direction in Fig. 1(a)) and advection
along the direction of ¯ow (x-direction in Fig. 1(a)),
may be written as follows in its dimensionless form:

@y
@ �t
�
�

�u � Af
rcp

�
@y
@ �x

� A2

Pe
� @

2y
@ �z 2
� f � yad �Da � eÿ

�E

y am�1ÿ a�n �5�

while the reaction kinetics accounting for mass advec-
tion is described by the cure equation:

da
d�t
� A � �u � da

d �x
� Da � eÿ

�E

y am�1ÿ a�n �6�

where y is the dimensionless temperature, t is the nor-

malized time, f is the porosity of the preform, a is the
degree of cure, and rcp is an average composite heat
capacity. The last term of the energy equation, Eq. (5),

represents the rate of evolution of heat due to the
exothermic cure reaction, in which the cure rate is
described by an empirical Arrhenius-type equation.
The empirical constants m and n appearing in Eqs. (5)

and (6) are related by the equation m+n=2, as is typi-
cally observed for autocatalytic reactions [9].
Furthermore, the term A denotes the aspect ratio (L/

H ) of the mold cavity.
In both Eqs. (5) and (6), all the spatial variables are

normalized with respect to the thickness, H of the

mold, and the temperature and time are nondimen-
sionalized with respect to the mold wall temperature
and a characteristic ®ll time, respectively, as follows:
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y � T

Tw

; �t � t

tc
; tc � L

uc

A number of nondimensional parameters arise when
the physical equations describing heat transfer and

cure are written in their dimensionless forms, as in
Eqs. (5) and (6). The principal nondimensional quan-
tities, namely the Peclet number, Pe, the dimensionless

activation energy, E, the adiabatic reaction tempera-
ture, yad, and the DamkoÈ hler number, Da, are de®ned
as follows:

Pe � uc � L�
kz
�r �c p

� ; �E � E

RTw

; yad � rr �Hr

Tw � �rcp� ;

Da � K � tc

�7�

where kz is the composite thermal conductivity in the
z-direction, rr is the resin density, Hr is the heat of the
exothermic cure reaction, E is the activation energy for

the reaction, and K is the frequency factor.
The normalized boundary conditions for the energy

Eq. (5), can be stated as follows: the top and the bot-

tom surfaces of the mold are maintained at constant
temperature, i.e., at z=0 and z=1, y=1. At the begin-
ning of ®ll, the preform is at ambient temperature, i.e.,

y� �t � 0� � y0, while the mold walls are heated.
Similarly, the kinetics Eq. (6), is associated with the
condition that the mold inlet, the resin is uncured, i.e.,
at x=0, a=0.

The numerical simulation of the process consists of
solving Eqs. (4±6) simultaneously to determine suc-
cessive locations of the resin ¯ow front as a function

of time. The temperature and cure ®elds in the resin
®lled region are determined by using an ADI scheme
[21] to solve the coupled thermochemical Eqs. (5) and

(6). The resin viscosity, which is required for determin-
ing the pressure distribution, is calculated as a function
of the temperature and cure using Eq. (3), and aver-

aged over the thickness of the composite. The complex
spatial dependence of the viscosity necessitates a nu-
merical solution of Eq. (4) for the pressure ®eld.
Darcy's law (Eq. (1)) is used to calculate the resin

front velocities from the computed pressure distri-
bution, and the ¯ow front is advanced to its next lo-
cation inside the mold. The above sequence is repeated

until the resin ®lls the mold completely.
The deterministic simulation model described above

forms the basis of the stochastic framework detailed in

the next section.

3. Stochastic modeling

Stochastic modeling is a method for systematic in-
vestigation of process uncertainties, and is based on

the simulation of associated physical phenomena for

special, but randomly selected stochastic instances [22].
The variabilities in the process are evaluated by per-
forming repeated deterministic simulations for a num-

ber of possible combinations of the uncertain inputs.
Fig. 1(b) gives a schematic modeling process, des-
cribing the various steps involved, which are explained

below.
The three main steps in a stochastic modeling are

the quanti®cation of the input parameter uncertainties,
the propagation of these uncertainties through a deter-
ministic process model, and evaluation of the resulting

output variabilities. The uncertain input parameters of
a stochastic model are assumed to be random vari-

ables that are described by probability distributions.
Di�erent distributions such as normal, log-normal, tri-
angular, and uniform distributions can be used to

characterize the input parameter uncertainties. An
appropriate sampling technique is used to choose com-
binations of parameter values from the prescribed

input distributions. The capability of the sampling
technique to accurately re¯ect the properties of the

input parameter distributions depends greatly on the
type of sampling technique, and the number of
samples chosen. The e�ects of the input parameter

uncertainties on the output variabilities are assessed
using the deterministic model to obtain the output

parameter values corresponding to each of the sampled
input parameter sets. Probability distributions for the
output parameters are then generated from the simu-

lation results. The deterministic model thus forms the
basis for the stochastic framework, as illustrated in
Fig. 1(b).

Identifying the critical uncertain input variables is
crucial for a rapid and accurate stochastic analysis.

In the speci®c context of the nonisothermal mold ®ll-
ing process under present consideration, the principal
sources of process variabilities are the preform micro-

structure, and the uncertainties associated with the
rheological and kinetic characterization of the resin.

In particular, the permeability (kx ), the preform por-
osity, f (which in turn in¯uences the permeability and
properties such as the composite thermal conductivity),

the rheological parameters (Zc, U, and l ), and the cure
kinetics parameters (E, K, and m ) exhibit varying
levels of uncertainties. Of all these uncertain quantities,

however, the preform microstructure forms the single
largest source of process variations. Further, owing to

their nonlinear in¯uence on the reaction rate (Eqs. (5)
and (6)), the activation energy, E, and the empirical
parameter, m, are more critical stochastic variables

than the frequency factor, K, even for comparable
magnitudes of uncertainties on these three parameters
[18]. Similarly, the parameters U and l have a greater

e�ect on the resin viscosity than the reference value Zc
(Eq. (3)). Therefore, only six parameters, namely the
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preform microstructure parameters (kx, f ), the kinetic
parameters (E, m ), and the viscosity parameters (U, l )
were considered to be uncertain. All the input distri-
butions are speci®ed in terms of their respective
mean values, m, and standard deviations, s.
Equivalently, the input uncertainties are quanti®ed in
terms of their normalized standard deviation, s/m, and
the mean, m.
In order to perform the stochastic analysis, the input

distributions need to be sampled to generate combi-
nations of input parameter values. Sampling tech-

niques used for this purpose work by generating a
suitable number of samples from the input parameter
distributions, so as to re¯ect the properties of the
parent distribution to a desired degree of accuracy.

Since stochastic modeling techniques require the invo-
cation of a deterministic model for each input par-
ameter set, the total computational time is a strong

function of the number of samples chosen. The
sampling technique should, therefore, require the least
number of samples in order to represent the parent

probability distribution accurately.
Di�erent techniques, such as Monte Carlo sampling

[23] and Latin Hypercube Sampling (LHS) [19], are

available for sampling from distributions. The Monte
Carlo technique chooses samples purely randomly
from the range of input parameter values, while LHS
is a strati®ed sampling method which works by div-

iding the input parameter range into as many inter-
vals of equal probability, P, as the number of
samples, N, such that NP=1. One value is chosen

from each interval, and the values generated for all
the input parameters are combined randomly to form
N input parameter sets. Note that a strati®ed

sampling, by virtue of the selection of samples from
equiprobable strata spanning the entire distribution,
provides a
better representation of the distribution, and as a

result, requires fewer samples in comparison to
purely random sampling using the Monte Carlo
technique [24]. The LHS technique is, therefore,

used in this analysis to sample the input distribu-
tions.
Corresponding to all the input parameter combi-

nations generated by LHS, the deterministic ®ll time,
t, and the maximum cure of the resin at the end of ®ll,
amax, are calculated using the deterministic numerical

model. The calculated process output values are, in
turn, used to determine the mean value and variance
of the output distributions. The variabilities on the
output parameters are quanti®ed by their normalized

deviations, de®ned as follows:

�
s
m

�
t

� 1

mt

����������������������������XN
j�1

�tj ÿ mt�2
Nÿ 1

vuut

�
s
m

�
amax

� 1

mamax

�����������������������������������������XN
j�1

�amax, j ÿ mamax
�2

Nÿ 1

vuut �8�

where m and s/m are, respectively, the mean value and

the normalized standard deviation of the output distri-
bution, and the subscripts t and amax correspond to
the ®ll time and the maximum cure when the preform
is completely permeated. The cumulative magnitude of

the output variabilities is quanti®ed using a normalized
output variance, d, de®ned as

d �
"�

s
m

�2

t

�
�
s
m

�2

amax

#
�9�

and is used in the presentation of the results of the

study.

4. Results and discussion

The stochastic analysis framework described above
was used to investigate the e�ects of the process par-
ameter uncertainties on the nonisothermal mold ®lling

step during resin transfer molding process. The princi-
pal goals of the stochastic analysis were the following:
(1) to analyze the e�ects of various dimensionless

groups on ¯ow and cure parameter variabilities, and
(2) to identify optimal settings for the dimensionless
parameters that minimize the ®ll time and the output

variabilities.
The six process and material parameters (kx, f, E,

m, U and l ) considered in the study were treated as

random input variables, and the magnitude of their
uncertainties were speci®ed by a 1% normalized stan-
dard deviation, i.e., s/m=0.01. This signi®es that the
input variables fall within the range de®ned by

0.97mÿ1.03m (the 23s limits) with 99.7% probability,
where m is the mean value of the input parameter. Five
of the uncertain inputs namely the porosity, f, the kin-

etic parameters (E, m ), and the viscosity parameters
(U, l ) were described by normal distributions, while
the preform permeability, kx, was assumed to follow a

log-normal distribution, owing to its small magnitude.
Table 1 lists the distributions considered for the di�er-
ent input parameters.
As mentioned previously, the Latin Hypercube tech-

nique was used to sample from the input distributions.
While a su�ciently large number of samples is
required for the parameter distributions to be rep-

resented accurately, increasing the number of samples
also increases the computational time. The minimum
sample size required was determined by conducting

stochastic simulations for varying number of samples,
and examining the output variabilities for convergence.
The required sample size was found to depend on the
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resin reactivity, and ranged from 1000 for the less-reac-

tive systems to 4000 for resin reactivities at the higher

end.

The stochastic simulations were conducted in terms

of four di�erent dimensionless quantities, namely, the

Peclet number, Pe, the DamkoÈ hler number, Da, the

dimensionless activation energy, E, and the adiabatic

reaction temperature, yad. Physically, the Peclet num-

ber is a measure of the relative importance of advec-

tion in the direction of resin ¯ow and conduction

through the thickness of the composite. A large Peclet

number signi®es the dominance of advection, while a

small Peclet number represents the case where conduc-

tion through the thickness dominates the heat transfer.

The DamkoÈ hler number is the ratio of the ®ll time

scale to the reaction time scale, and signi®es how fast

the reaction takes place relative to the ®lling of the

mold. The dimensionless activation energy along with

the DamkoÈ hler number determines the cure rate. The

adiabatic reaction temperature denotes the temperature

increase potential due to the heat of the reaction, Hr.

The dimensional parameters present a concise descrip-

tion of a wide range of material and process par-

ameters, and are used as the basis for a generalized

representation of the stochastic simulation results.

The parametric studies were carried out for a wide

range of Peclet numbers and di�erent values of the

dimensionless activation energy, E, the DamkoÈ hler

number, Da, and the adiabatic reaction temperature,

yad. The range of values considered for the dimension-

less groups are listed in Table 2, and are based on the

mean values of the stochastic parameters involved. The

mean ®ll time, t, and the mean value of the maximum

cure achieved at the completion of ®ll, amax, were two
of the output parameters of interest. A normalized out-

put variance, d (Eq. (9)), was used to quantify the
cumulative process output variability due to the vari-
ances in these two output parameters. The output vari-

ance is, in e�ect, an indicator of the noise to signal
ratio of the process, and needs to be minimized in
order to achieve robust processing conditions. Thus,

one of the objectives of this investigation was to deter-
mine the mean values of the dimensionless groups
(representing the process and material parameters) that

minimize the output variance, d.
Besides minimizing the process output variabilities,

d, it is additionally desirable to minimize the mean ®ll
time, t, and achieve as much cure, amax, in the resin as

possible at the end of the ®lling process. Furthermore,
it is imperative that the resin ®ll the mold completely
without gelling (onset of crosslinking) prematurely.

This constraint may be translated to the mold ®ll frac-
tion, f, which denotes the fraction of cases for which
complete mold ®lling is achieved, being equal to unity.

These competing process requirements can be concisely
represented by an objective function, Z, de®ned as fol-
lows:

Z � t � d
�1� a max � f �10�

A second goal of the stochastic analysis was, therefore,
to determine the processing conditions that minimize
the objective function, Z.
Prior to examining the e�ects of the dimensionless

parameters on the process variabilities, it is instructive
to understand the combined e�ects of the thermal and
kinetic phenomena on the resin viscosity, which in¯u-

ences the ¯ow of the resin. Fig. 2 shows a typical vari-
ation of the resin viscosity with time during an
isothermal mold ®ll. Initially, the degree of cure is gen-

erally not su�cient to have an appreciable e�ect on
the viscosity. The initial portion of the curve, there-
fore, corresponds to the resin viscosity decreasing as a

result of the increased temperature (per Eq. (3)) due to
the heat transferred from the mold walls. As the resi-
dence time available for the crosslinking reaction
increases, however, the degree of cure of the resin also

increases, and acts in opposition to the temperature

Table 2

Ranges of values of the dimensionless groups in the parametric studies

Dimensionless group Range

Peclet number, Pe 10ÿ2±109

Dimensionless activation energy, E 86.2±94.0

DamkoÈ hler number, Da 8�1020±8� 1023

Dimensionless adiabatic reaction temperature, yad 0.5±10.0

Table 1

Probability distributions of the uncertain inputs

Parameter Distribution

Permeability, kx Lognormal

Porosity, f Normal

Activation energy, E Normal

Rate exponent, m Normal

Viscosity parameter, U Normal

Viscosity exponent, l Normal
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(Eq. (3)) in in¯uencing the viscosity of the resin. After

a certain time, tcrit, the resin kinetics constitute the

dominant viscosity-controlling process, and lead to an

increase in the resin viscosity. It is evident that the

e�ects of the degree of cure on resin viscosity lag those

of the temperature. The e�ects of the dimensionless

parameters on the interactions between the input pro-

cess variabilities can be understood better in the light

of the results of Fig. 2.

The mean values of the dimensionless ®ll time, t,
and the maximum degree of cure at the end of mold

®ll, amax, are plotted in Fig. 3(a, b) as a function of

the Peclet number, Pe, for four di�erent values of the

dimensionless activation energy, E. It may be seen in

Fig. 3(a) that the ®ll time increases with the Peclet

number, which represents a ratio of the conduction

time scale to the ¯ow time scale. A smaller value of

the Peclet number, therefore, corresponds to the con-

duction time scale being small, and the increased resin

temperature resulting from the rapid heat conduction

leads to reduced resin viscosity, and in turn, shorter ®ll

times. Fig. 3(b) shows that for a given activation

energy, the maximum degree of cure at the end of

mold ®ll increases with the Peclet number owing to the

Fig. 3. Variation of the (a) dimensionless ®ll time, t, (b) maximum cure at the end of ®ll, amax, (c) normalized output variance, d,
and (d) multivariate objective function, Z, with Peclet number and the dimensionless activation energy, for Da=8 � 1020, and

yad=1.0.

Fig. 2. An example variation of the resin viscosity during

isothermal mold ®lling.
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longer residence time available for the cross-linking

reactions. Furthermore, the maximum degree of cure
increases with increasing resin reactivity, as denoted by
the decreasing activation energy values in Fig. 3(b). In

particular, for the smaller activation energies of 86.2
and 88.9, and for intermediate and large Peclet num-
bers, the degree of cure values are su�ciently high to

increase the resin viscosity (corresponding to the trend
in the viscosity curve above tcrit in Fig. 2). This is

re¯ected in an increase in the ®ll time for the smaller
activation energies, in Fig. 3(a).
It is of interest to note in Fig. 3(b) that for the smal-

lest activation energy studied, over the range of Peclet
numbers between about 107 and 109, the resin gels

(i.e., the fractional degree of cure exceeds about 0.5)
during the injection process, resulting in an incomplete
mold ®ll. The mean ®ll time, which is based on the

samples that yield complete mold ®ll only, is therefore
seen to decrease over this range of Peclet numbers in
Fig. 3(a). It is also evident from Fig. 3(a) that the ®ll

time asymptotically approaches constant high and low
values for Pe41 and Pe4 0, respectively. The limit

of the Peclet number tending to in®nity implies a prac-
tically zero conduction inside the preform, and the ®ll
time corresponds to an isothermal ®ll with the resin

being at its inlet temperature. Conversely, very small
Peclet numbers correspond to a relatively large con-

duction inside the composite, which leads to an instan-
taneous equilibrium of the preform and resin
temperature at that of the wall temperature, Tw. The

®ll time, therefore, corresponds to the low resin vis-
cosity at the high mold wall temperature.
The normalized output variance, d, de®ned by Eq.

(8), is plotted as a function of the Peclet number and
the dimensionless activation energy in Fig. 3(c). It is

evident from the results in this plot that for each
dimensionless activation energy, there exists a Peclet
number that minimizes the output variabilities.

Furthermore, the optimum Peclet number shifts
towards higher values as the reactivity of the resin

increases. The optimum may be interpreted in terms of
a window on the reaction rate which minimizes the
variabilities. The Arrhenius nature of the cure reaction

suggests that resin systems with smaller reactivity, i.e.,
a large E, require a higher temperature to achieve a
given reaction rate, in comparison with the faster

reacting systems. Since the conduction time scale
increases with the Peclet number, it follows that the

optimum Peclet number increases with decreasing E so
as to keep the reaction rate within an optimum range.
Based on the foregoing reasoning, it may be argued

further that for a ®xed Peclet number, the output var-
iance will be minimized for a particular value of the
dimensionless activation energy, E. Fig. 3(c) con®rms

this physical expectation, wherein the optimum values
of E are seen to be 88.9 for Pe<5� 105 and 86.2 for

Pe>5 � 105, over the scope of the parametric studies

conducted. Overall, E=86.2 and Peclet numbers in the
range 106±108 are found to result in least output vari-
ance during the processing.

Fig. 3(d) shows the variation of the objective func-
tion, Z (Eq. (10)), with the Peclet number for di�erent

values of the dimensionless activation energy. A com-
parison of this ®gure with Fig. 3(a) shows that the
objective function is predominantly in¯uenced by the

®ll time. Although no distinct minima are observed
with respect to the Peclet number, resin systems with a
higher reactivity (E=86.2 and E=88.9) are seen to

yield lower objective function values over the range of
parameters studied.

The e�ects of the DamkoÈ hler number on the process
parameters and their variabilities are described in Fig.
4(a±d). Fig. 4(a, b) depicts, respectively, plots of the

mean values of the dimensionless ®ll time, t, and the
maximum degree of cure at the end of mold ®ll, amax,
as a function of the Peclet number, Pe, for four di�er-

ent DamkoÈ hler numbers in the range Da=8 � 1020ÿ8
� 1023, which represents a spectrum of resin reactiv-

ities. Since a large DamkoÈ hler number (Da ) value rep-
resents a highly reactive system, as does a small
dimensionless activation energy (E ), the physical

trends with respect to increasing values of the
DamkoÈ hler number are expected to follow those as-
sociated with decreasing dimensionless activation ener-

gies. A comparison of the results presented in Fig. 4(a,
b) vis-aÁ -vis those in Fig. 3(a, b), respectively, reveals

this similarity. It is seen in Fig. 4(a) that while the ®ll
time is not signi®cantly in¯uenced by the resin reactiv-
ity, i.e., the DamkoÈ hler number, at low Peclet num-

bers, the ®ll time increases with DamkoÈ hler number
for large values of the Peclet umber. This behavior
may be explained based on the relative magnitudes of

the time scales for conduction and reaction, and their
resulting in¯uence on the resin cure and viscosityÐand

in turn, the ®ll timeÐas described previously in con-
nection with Fig. 3(a). Furthermore, for a ®xed
DamkoÈ hler number, the ®ll time and the maximum

degree of cure increase with the Peclet number (Fig.
4(a, b)) following a similar variation in Fig. 3(a, b) for
a constant dimensionless activation energy. Fig. 4(b)

also shows that the degree of cure values for the high-
est DamkoÈ hler number studied (8 � 1023) are close to

the gel point for several cases in the high Peclet num-
ber regime, which is re¯ected in the relatively longer
mold ®ll time values in Fig. 4(a).

The normalized variance on the ®ll time and the
maximum degree of cure at the end of mold ®ll, d (Eq.

(9)), is plotted as a function of the Peclet number in
Fig. 4(c), for the di�erent DamkoÈ hler numbers investi-
gated. The curves in the ®gure indicate the existence of

optimum Peclet numbers that minimize the output var-
iance for each DamkoÈ hler number. It can also be seen
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that the optimum Peclet number increases as the

DamkoÈ hler number increases. The optimum Peclet

number may be viewed in terms of an optimum reac-

tion rate, as noted in the context of Fig. 3(c). Since the

reaction rate increases with DamkoÈ hler number, the

optimum reaction rate may be realized through a re-

duction in the resin temperature achieved by an

increase in the Peclet number. The optimum Peclet

number therefore increases with the DamkoÈ hler num-

ber in Fig. 4(c). Also evident in Fig. 4(c) is the exist-

ence of an optimum DamkoÈ hler number for each

Peclet number, which minimizes the process output

variabilities. In the range of Peclet numbers less than

104, and those above 108, the variance is minimized for

Da=8 � 1021, while Da=8 � 1022 is found to be the

optimum for 104 < Pe < 108. For a chosen resin sys-

tem, since the DamkoÈ hler number is a function of the

inlet pressure and the wall temperature, it follows that

there are optimum process parameter settings that lead

to minimum output variances. It may be noted from

that of all the parameter combinations studied in Fig.

4(c), Peclet numbers in the range 102±106 together with

8�1021EDaE8� 1022 lead to robust processing.

Fig. 4(d) presents the objective function, Z (Eq.

(10)), as it varies with the Peclet number for di�erent

values of the DamkoÈ hler number. The variation of the

objective functions with the Peclet number exhibits a

trend similar to that shown by the dimensionless ®ll

time in Fig. 4(a). The objective function approaches a

minimum value asymptotically for very small Peclet

numbers, and increases monotonically to attain an

asymptotic upper limit as the Peclet number becomes

large. While the objective function, Z, increases con-

tinuously with the Peclet number, DamkoÈ hler numbers

of Da=8 � 1021 and 8 � 1022 are seen to minimize Z

for Pe<103 and Pe>103, respectively.

Fig. 5(a±d) demonstrate the e�ects of the adiabatic

reaction temperature on the process variabilities. As

described earlier, the adiabatic reaction temperature is

a measure of the temperature rise potential of the resin

due to the exothermic cure reaction. Fig. 5(a) shows

plots of the mean dimensionless ®ll time, t, against the
Peclet number, for di�erent values of the adiabatic

Fig. 4. Variation of the (a) dimensionless ®ll time, t, (b) maximum cure at the end of ®ll, amax, (c) normalized output variance, d;
and (d) multivariate objective function, Z, with Peclet number and DamkoÈ hler number, for E=91.4, and yad=1.0.
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reaction temperature, yad=0.5, 1.0, 5.0 and 10.0. Fig.

5(b) presents the corresponding mean values of the

maximum degree of cure, amax, achieved at the end of

mold ®ll. The variation of the ®ll time and the maxi-

mum degree of cure with the Peclet number remain as

noted and explained previously with reference to Figs.

3 and 4. The increased exotherm associated with larger

values of the adiabatic reaction temperature results in

a greater degree of cure at the end of the ®lling pro-

cess, as shown in Fig. 5(b). The extent of crosslinking,

however, is seen to be less than 10% for the smaller

adiabatic reaction temperatures (yad=0.5 and 1.0),

which results in a negligible in¯uence on the resin vis-

cosity and the ®ll time (Fig. 5(a)). For the larger values

of the adiabatic reaction temperature (yad=5.0 and

10.0), a maximum degree of resin cure of about 30% is

attained for the higher Peclet numbers; the correspond-

ing increase on the resin viscosity causes the longer ®ll

times evident in Fig. 5(a). Overall, however, the in¯u-

ence of the adiabatic reaction temperature on the ®ll

time is seen to be minimal, with the maximum vari-

ation being about 3% for the higher Peclet numbers.

Furthermore, unlike the results of the studies on the

variation of the dimensionless activation energy and

the DamkoÈ hler number (Figs. 3(b) and 4(b)), the

degree of cure was found to remain below the gel

point, implying a 100% mold ®ll (equivalently, f=1),

over the entire range of adiabatic reaction tempera-

tures and Peclet numbers studied.

The cumulative normalized variance on the ®ll time

and the degree of cure are plotted in Fig. 5(c), as a

function of the Peclet number and the adiabatic reac-

tion temperature. Analogous to the observations in

Fig. 3(c) and 4(c), the variance is seen to be minimized

for particular values of the Peclet number. Since the

exotherm associated with higher values of the adiabatic

reaction temperature tends to enhance the reaction

rate, the optimum Peclet number itself increases with

the adiabatic reaction temperature, thereby reducing

the conduction heat transfer from the mold walls, so

as to maintain the reaction rate within an optimum

range that minimizes the cumulative variance. The con-

Fig. 5. Variation of the (a) dimensionless ®ll time, t, (b) maximum cure at the end of ®ll, amax, (c) normalized output variance, d,
and (d) multivariate objective function, Z, with Peclet number and the dimensionless adiabatic reaction temperature, for E=91.4,

and Da=8�1020.
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sideration of optimum reaction rate also explains the

existence of optimum adiabatic reaction temperature
values for ®xed Peclet numbers. It is evident from Fig.
5(c) that the optimum yad values are as follows: 0.5 for

Pe<1; 1.0 for 1<Pe<104 and Pe>108; and 5.0 for
104< Pe<108. Fig. 5(c) further reveals that the adia-
batic reaction temperatures between 1 and 5 combined

with Peclet numbers in the range 102±106 lead to the
smallest variance overall, based on the parametric

values investigated. It follows from the de®nition of
the dimensionless adiabatic temperature (Eq. (7)) that
values of yad on the order of unity signify an isother-

mal-like mold ®lling where the heat of the reaction po-
tentially raises the ®ber-resin mix temperature to that
of the mold wall. It is interesting to note that such a

con®guration minimizes the output variability for most
of the Peclet numbers.

The in¯uence of the adiabatic reaction temperature
and the Peclet number on the multi-attribute objective
function, Z, is illustrated in Fig. 5(d). The overall vari-

ation is dominantly governed by that of the ®ll time,
and the objective function increases monotonically

with the Peclet number. In the range of Peclet numbers
less than about 104, the maximum variation in the
objective function value with respect to yad is observed

to be less than 5%. Nevertheless, the fact that the
objective function is minimized by the lower adiabatic
temperature values (yad=0.5 and 1.0) in this range of

Peclet numbers is noteworthy. On the other hand, in
the high Peclet number range (Pe>104), the optimum

adiabatic reaction temperature shifts to the higher
values of 5.0 and 10.0.
The general trend seen from Figs. 3±5 indicates the

existence of speci®c ranges of the dimensionless groups
that minimize the normalized output variance, d, and
the multi-attribute objective function, Z. Since the

dimensionless groups incorporate both the material
parameters and process design variables, the optimum

values determined for these nondimensional quantities
translate into optimal operating conditions for a given
material system, and can be expressed in terms of such

parameters as the resin inlet temperature, To, the mold
wall temperature, Tw, and the inlet pressure, pi.
Alternatively, if material selection and preform design

were to be made based on robust processing consider-
ations, the optimum values may be used for a concur-

rent material and process design.
The combination of the stochastic modeling frame-

work presented in this article, with a numerical opti-

mization technique (such as nonlinear programming)
will provide a valuable tool for stochastic process op-

timization. Since the process simulations for the var-
ious samples are independent of one another, use of
parallel processing may be explored to improve compu-

tational times for stochastic analysis and optimization.
Furthermore, comparison of the optimum con®gur-

ations derived from the stochastic analyses with the ex-
perimental results obtained from statistical design of

experiments technique [8±10] will o�er a fundamental
bridge between the experimental and the theoretical
approaches. Investigations are presently underway on

the foregoing issues, and will be reported in the future.

5. Conclusions

This paper presented a stochastic analysis method-
ology for investigating the parameter uncertainties as-

sociated with nonisothermal mold ®lling during resin
transfer molding processes. The analysis was per-
formed in terms of suitably formulated dimensionless

groups, and the process output variabilities were stu-
died as a function of these nondimensional quantities.
Based on parametric studies, optimum values of the

dimensionless groups that lead to minimum ®ll times
and output variances, while maximizing the degree of
cure attained at the end of mold ®lling, were identi®ed.
The optimum values of the dimensionless groups trans-

late into optimum design of material and process par-
ameters in practical processing. Overall, the
methodology presented provides a fundamental

science-based capability for robust process designs in
the face of realistic parametric uncertainties.
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